
SKDream: Controllable Multi-view and 3D Generation with Arbitrary Skeletons

Supplementary Material

We provide additional discussion and results in the ap-
pendix and our project page https://skdream3d.github.io/.
Readers can check following contents for the questions they
may be curious about:

• A. How does the model trained on synthesized skeletons
perform on human-made skeletons? [Line-819]

• B. What if we only use single-view condition? Why do
we need multi-view condition? [Line-834]

• C. How does the model perform on novel categories be-
yond the training set? [Line-894]

• D. How are the mesh skeletonization results compared
with other methods? [Line-902]

• E. Implementation details.
• F. Limitations and future works.
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A. Evaluation on Human-made Skeletons

In the main part, we propose a mesh skeletonization method
to generate data, and the evaluation is also based on the
synthetic skeletons. Considering the potential gap between
synthetic skeletons and human-made skeletons, we also
evaluate our method on human-made skeletons. We sam-
ple 92 human-made skeletons from ModelResource [70]
validation set. The skeletons mainly contain animal and
human-shape structures. We obtain the text prompts by us-
ing Cap3D [36] on the images rendered from meshes.
Comparison results. We compare the proposed SCM
model [skeleton correlation module (SCM) + coordinate
color encoding with depth (CCE-D) condition] with SDEdit
[38], SDEdit+COSAG and raw model [convolutional mod-
ule + binary condition]. The qualitative results are shown in
Fig. 11. The quantitative comparison results are shown in

Tab. 4. The results present consistency with Objaverse-SK
evaluation, which suggest that:

• The proposed mesh skeletonization method can pro-
duce skeletons similar to human-made skeletons.

• Despite our method is built on synthetic skeletons, it
can be applied on human-made skeletons.

Method SKA Score PickScore
SDEdit [38] 67.07 17.52
SDEdit+COSAG 68.94 18.58

Ours-Raw 69.13 30.16
Ours-SCM 77.38 33.73

Table 4. Quantitative comparison of SKA Score and PickScore
on human-made skeletons from ModelResource (§A).

B. Single-view Condition and Generation

We elaborate on multi-view conditioned multi-view gen-
eration (MV2MV) in our main part. The motivation
is that multi-view skeleton images can describe object
anatomy and pose better. In the following part, we discuss
single-view conditioned single-view generation (SV2SV,
Appendix B). In this setting, we train a single-view skele-
tal conditioned generation model based on StableDiffusion-
v2.1-base2. We use a single-view skeletal image as the input
condition. The model is also trained on Objaverse-SK. We
render the training images at the resolution of 5122 (note
the resolution of multi-view generation is 2562). Similar
trade-off on resolution occurs in MVDream [55] and Sta-
bleDiffusion [53].
Model comparison. We compare the proposed SCM model
[skeleton correlation module (SCM) + coordinate color en-
coding with depth (CCE-D) condition] with the raw model
[convolutional module + binary condition]. Two self-
attention layers with layer normalization is used to model
the skeletal correlation.
Results comparison. The quantitative comparison is in
Tab. 5, and the qualitative comparison is in Fig. 12 and
Fig. 13. We observe that SV2SV models suffer from more
severe condition ambiguity, sometimes produce incorrect
results, especially on side or back views. The raw model
struggles to tell view pose and object anatomy from the
skeletal image due to the severe ambiguity. SCM with CCE-
D can alleviate ambiguity and improve anatomy and pose

2https://huggingface.co/stabilityai/stable-diffusion-2-1-base/tree/main

https://skdream3d.github.io/
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Figure 11. Qualitative results on human-made skeletons in ModelResource validation set [70] (§Appendix A). Despite our method is
built on synthetic skeletons, the model can also be applied on human-made skeletons.

Method\SKA Score MeanInst. MeanClass Animals Humans Plants Apodes Bipeds Quadrupeds Arthropods Wings

SV2SV-Raw 64.42 57.66 76.24 63.84 32.89 85.72 83.68 73.41 77.98 68.34
SV2SV-SCM 73.89 68.25 83.55 75.17 46.04 88.85 85.18 82.24 83.21 82.53

MV2MV-Raw 74.69 67.09 88.39 69.90 42.97 94.74 82.14 90.18 89.81 84.69
MV2MV-SCM 81.13 74.38 91.16 78.45 53.53 94.47 85.20 94.19 90.68 88.40

Table 5. Qualitative comparison of Skeleton Alignment Score (SKA) of single-view conditioned generation (SV2SV) and multi-view
conditioned generation (MV2MV) (§Appendix B).

alignment. When using single-view condition, the ambi-
guity gets more severe, and the improvement is also more
significant.

C. Evaluation on Novel Categories

We evaluate our model on ShapeNet [5] to demonstrate
the generalization ability. In our training data, animals, hu-
man shapes and plants are included while the skeletal con-
ditioned generation can actually generalize to arbitrary cat-

egories. We sample 128 instances from three new classes
“Airplane”, “Chair” and “Guitar” in ShapeNet. Skeletons
are extracted and then served as conditions for genera-
tion. The qualitative results are in Fig 7. The quantitative
comparison results with baseline methods SDEdit [38] and
SDEdit+COSAG are in Tab 6. The results suggest that de-
spite the Objaverse-SK mainly covers three categories, the
trained model can generalize to other novel categories well,
realizing arbitrary skeleton controlled generation.
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A rattlesnake, thick body, triangular head, segmented rattle at the tail.A lizard, elongated body, scaly skin, long tail, small head, four legs.

A gorilla, robust body, black fur, large hands. A dragon, large scaled body, long serpentine tail, expansive wings, sharp claws.

Figure 12. Qualitative comparison of different generation settings (§Appendix B). Single-view condition (SV) struggles to control
object anatomy and pose precisely, while multi-view (MV) condition performs better.
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Figure 13. Qualitative comparison of single-view conditioned single-view generation (SV2SV) (§Appendix B). SV2SV models suffer
from more severe condition ambiguity, while SCM with CCE-D can alleviate ambiguity and improve anatomy and pose alignment.

D. Comparison of Mesh Skeletonization

We compare our method with learning-based method
RigNet [71], and the results are shown in Fig. 15. More
results of our method are shown in Fig. 14. The most im-
portant reason that RigNet can not be direcly applied is
that it assumes that the skeletons are symmetric. How-
ever, the dataset contains many asymmetric objects. Even
the object is symmetric, once it is posed, it will also become
asymmetric. In addition, since the symmetry constraint is
imposed, the object should stay in a determined orientation
related to the plane of symmetry. If the orientation is wrong,
RigNet will produce wrong results. In addition, RigNet re-
lies on hyperparameters to produce decent results. Using
default hyperparameters may produce inaccruate joints and
bones. Consequently, the total success rate is around 15%
in our test. On the contrary, our method runs without limi-
tation of symmetry and is not sensitive to hyperparameters.
It can produce more reliable results with a higher success
rate around 80%.
Failure cases. We show the failure cases of our pipeline
in Fig. 16. The skeletons may not be properly generated
for non-tree like structures, e.g. a ball or a bottle. When
the input mesh does not meet the watertight requirement,
our pipeline may also fail. For example, the mesh is incom-
plete/broken, or the mesh consists of multiple parts/contains

open surfaces.

E. Implementation Details

E.1. Dataset Construction
Mesh preprocessing. In order to construct the mesh-
skeleton pairs with a high success rate, we propose a full
pipeline starting from an arbitrary mesh to final skele-
ton. The mesh preprocessing and rendering are finished
in Blender3: a) Normalization. Given a mesh file, we
first normalize it into (−0.5, 0.5)3. Files with a size larger
than 200M are filtered to avoid crash. b) Remeshing. The
remesh modifier is applied, with the voxel size set as 0.005.
We need to make sure the mesh is watertight before skele-
tonization. c) Decimation. To accelerate later skeletoniza-
tion steps, the remeshed result is further decimated with a
ratio of 0.2, i.e. the face count is reduced into 1/5.
Mesh skeletonization. We use the implementation of Mean
Curvature Flow [58] in CGAL library4. After curve graph
are generated from the preprocessed mesh, we first find the
largest connected component. Only the main object of the
mesh is considered. Then the graph is separate into parts by
intersection points. The Douglas–Peucker algorithm [12] is

3https://www.blender.org/
4https://www.cgal.org/



SKA Score PickScore
Method Training Meaninst. Airplane Chair Guitar Win Rate Airplane Chair Guitar
SDEdit [38] ❍ 68.60 72.92 63.33 69.58 23.92 29.65 26.16 15.77
SDEdit+COSAG ◗ 69.40 71.92 65.74 70.57 24.12 31.10 23.84 17.26

Ours-SCM ● 74.30 81.54 69.93 71.36 51.95 39.24 50.00 66.96

Table 6. Comparison of Skeleton Alignment Score (SKA) and PickScore of novel categories from ShapeNet [5] (§Appendix C).

Figure 14. Demonstration of generated skeletons in our Objaverse-SK dataset (§Appendix D).
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Figure 15. Comparison of skeletons generated by RigNet [71]
and our method (§Appendix D).

used to simplify each part, with the distance threshold set
as 0.01. In addition, points with a distance less than 0.01
are also merged. Later, the sparse graph is converted into
a spanning tree to remove cycles. Finally, the root of the
skeleton is determined by finding the minimum height tree.
Mesh and skeleton rendering. For each mesh file, we ran-
domly select 4 elevation angles in [−10◦, 45◦] degrees. For
each elevation angle, 32 azimuth angles are selected uni-

Scanned incomplete/broken mesh

Non-tree structure

Scanned incomplete/broken meshNon-tree structure

Figure 16. Failure cases of our mesh skeletonization pipeline
(§Appendix D).

LN3Diff ↓ Trellis3D ↓GSO dataset ↑

Fig 2. Skeletons in AnimatableDreamer: dense joints, unstructured bones.

Fig.A Skeletons extracted from different mesh sources.

Fig 2. AD: dense joints, 
unstructured bones.

Collected 3D meshes in other datasets, e.g., GSO dataset

Reconstructed 3D meshes from images, e.g., LN3Diff, Trellis3D

Figure 17. Examples of more mesh sources for data extension.
(§Appendix F).

formly in 360◦. The FOV of the camera is set as 45◦. The
distance between the camera and the object is randomly set
between [2.5, 3.5]. Finally, 128 RGB images with a size
256× 256 are rendered for each object. We use the EEVEE
engine in Blender for fast rendering. For each RGB im-
age, the corresponding skeleton is rendered with the same
camera parameters. The joints are projected by the per-
spective transformation and colored by the proposed coordi-
nate color encoding method. Bones are then drawn between
joints, and bone colors are determined by the center points.
During projection, the depth values are calculated and are
inversed and normalized to [0.2, 1] as the alpha channel.



E.2. Model Training
The models are trained on our proposed Objaverse-SK
dataset with a learning rate of 1 × 10−5. Multi-view mod-
els are trained with 4k steps, and the batch size is 240*4
(four views). For models without skeletal correlation mod-
ule, we train 8k steps for convergence. Single-view models
are trained with 10k steps, and the batch size is 240. Since
the image resolution for multi-view training is 2562 while
that for single-view training is 5122, the total GPU mem-
ory consumption is similar. Diffusers 5 and Accelerate 6

libraries are used for mix-precision training. The imple-
mentation of the models is based on MVDream [55] and
MVControl [30].

F. Limitation and Future Work
Shape representation. Noticing the limited capacity of
text for shape description, we resort to skeletons. However,
there are still some objects which can not be well described
by skeletons (Fig. 16). A possible future work is to de-
sign more general and expressive shape representations as
conditions. Some works propose new skeletal shape repre-
sentations [11], but the utility and simplicity for editing and
articulation may be compromised.
Skeleton ambiguity. Although we propose to use multi-
view generation to avoid skeleton ambiguity, there are still
some cases that the skeleton is not correctly recognized.
The key problem is that parts in the skeleton are not bind
with specific semantics. A meaningful future work is to in-
ject semantic information into the skeletal conditions. For
example, the word “head” is bind with the head joints in the
skeleton and can be recognized by the model. This will not
only help the model to understand the skeleton and generate
correct content but also enable more flexible controlling.
Generation paradigm. We build our generation frame-
work as multi-view to 3D generation. The generation qual-
ity is limited by the low resolution of multi-view images.
Recently native 3D generation methods [7, 21, 25, 67, 76]
have achieved impressive results. Injecting skeletal condi-
tions into native 3D generation frameworks for more ac-
curate spatial control and high-quality generation is also a
meaningful topic to study.
Data extension. We construct our dataset upon Objaverse
and mainly contain three classes (animals, human shapes,
and plants). As for more general skeletal control, extend-
ing the dataset into a broader domain is important. Multiple
data sources can be considered (Fig. 17). First, collecting
meshes from more datasets like GSO and Objaverse-XL.
The diversity of skeletons can be further enhanced. Second,
given the promising results of LRMs, meshes can be recon-
structed from 2D images. As a result, image-mesh-skeleton

5https://huggingface.co/docs/diffusers/en/index
6https://huggingface.co/docs/accelerate/en/index

triplets can be obtained by using LRMs and our skeletoniza-
tion method. The data scale of 2D image datasets is much
larger than 3D mesh datasets and appearance realism is also
better.
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