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Abstract

Controllable generation has achieved substantial progress
in both 2D and 3D domains, yet current conditional gen-
eration methods still face limitations in describing detailed
shape structures. Skeletons can effectively represent and de-
scribe object anatomy and pose. Unfortunately, past stud-
ies are often limited to human skeletons. In this work,
we generalize skeletal conditioned generation to arbitrary
structures. First, we design a reliable mesh skeletoniza-
tion pipeline to generate a large-scale mesh-skeleton paired
dataset. Based on the dataset, a multi-view and 3D genera-
tion pipeline is built. We propose to represent 3D skeletons
by Coordinate Color Encoding as 2D conditional images.
A Skeletal Correlation Module is designed to extract global
skeletal features for condition injection. After multi-view
images are generated, 3D assets can be obtained by incor-
porating a large reconstruction model, followed by a UV
texture refinement stage. As a result, our method achieves
instant generation of multi-view and 3D contents that are
aligned with given skeletons. The proposed techniques
largely improve the object-skeleton alignment and gener-
ation quality. Project page at https://skdream3d.github.io/.

1. Introduction

In view of visual representation dimension [64, 72], 2D
image generation [16, 53, 57], multi-view (2.5D) genera-
tion [35, 55], and 3D generation [17, 27, 69] have advanced
successively and achieved significant progress. Given the
success of large language models [23, 26, 43, 48–50], tex-
tual representation has been widely applied in generation
[51–53], as in other domains [13, 14, 73]. To achieve
more controllable generation, conditions beyond text have
attracted considerable attention. 2D image conditions (e.g.,
edge maps, human skeletons, and concept references) [54,
75] have been well studied. Similarly in 3D generation,
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2D [30] and 3D [10] conditions have also been explored.
Although the aforementioned conditions in controllable

generation complement text descriptions, they still struggle
to precisely describe shape structures. In contrast, skele-
tons, among various types of conditions, exhibit superior
ability to depict shape structures: (i) Representation of ob-
ject anatomy. Skeletons can efficiently represent various
3D structures with sparse joints and bones, while other con-
ditions like depth maps fail to represent full 3D anatomy.
(ii) Articulation into different poses. Skeletons are widely
used for character animation in computer graphics [3, 22]
due to their simplicity and efficiency. Other conditions such
as rough shapes [10] are inconvenient for pose articulation.
(iii) Freedom of editing. Given an initial skeleton, users
can freely add new structures or modify joints and bones to
create ideal shapes. Examples are in Fig. 1.

Despite these advantages, previous studies [19, 20, 40,
75, 77] on conditional generation are limited to human
skeletons. From the perspective of generalization, we would
like to ask: Is it possible to use arbitrary skeletons as con-
ditions to generate any creatures or even general objects?

To achieve this goal, we identify two main challenges
that hinder the use of arbitrary skeletal conditions for gen-
eration: (i) Lack of large-scale object-skeleton pairs for
training. Extensive studies [4, 15, 37] on 2D/3D hu-
man pose estimation have made human-skeleton paired data
readily available. However, when skeletal structures are un-
known, estimating arbitrary skeletons from 2D images or
videos becomes challenging due to its ill-posedness. (ii) In-
sufficiency of 2D information to describe arbitrary skele-
tons. Human skeletons are relatively simple and can be de-
scribed by a fixed set of 2D joints. However, complex skele-
tons suffer from self-occlusion and ambiguity, necessitating
3D information to fully capture their anatomy and pose.

To address these challenges, we focus on multi-view
and 3D generation with skeletal conditions. To tackle
data scarcity problem, we construct a large-scale dataset
Objaverse-SK containing mesh-skeleton pairs. Textured
meshes are selected from Objaverse [8] by semantic classes
to form a subset. In order to achieve reliable mesh skele-
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Figure 1. Demonstration of skeletal conditions for controllable generation. We argue that skeletons and text provide complementary
description for shape and appearance respectively, as shown in (a). Moreover, flexible and accurate control of object anatomy and pose
can be realized by editing the joints and bones in skeletons, as shown in (b). Arbitrary skeletal structures are supported in our framework.
Multiple views are generated and only front-view images are shown.

tonization, we propose a new pipeline to generate skeletons
with sparse joints from meshes. The pipeline mainly con-
sists of curve skeleton extraction and curve simplification,
achieving an 80% success rate, significantly outperforming
previous deep learning based method RigNet [71].

To fully control object anatomy and pose, we build
the skeletal conditioned generation model in a multi-view
manner. We represent a 3D skeleton with conditional skele-
ton images by Coordinate Color Encoding (CCE) to reduce
ambiguity. Joints and bones are encoded with unique colors
according to their 3D positions. For condition injection, we
designed a Skeletal Correlation Module (SCM) to extract
features from these conditional images and then generate
multi-view images for the object. Later, a Large Recon-
struction Model (LRM) is employed to produce 3D assets
from the multi-view images. To address potential blurriness
during reconstruction, we enhance appearance quality by a
refinement stage that up-samples the multi-view images to
higher resolutions and refines the texture in UV space.

The experimental results indicate that our framework
achieves instant generation of multi-view and 3D contents
which are aligned with given skeletons. The proposed co-
ordinate color encoding and the skeletal correlation module
significantly improve the object-skeleton alignment, and ac-
celerate model convergence by 5×. 3D assets conforming
to the given skeleton can be generated in ∼20s and refined
in ∼60s. To the best of our knowledge, this work is a pio-
neer in achieving arbitrary skeletal conditioned generation
with following contributions:

• Constructing the first large-scale dataset, Objaverse-
SK, containing mesh and skeleton pairs that cover diverse
skeletal structures. We developed a pipeline to generate
sparse skeletons from meshes with a high success rate.

• Proposing a multi-view and 3D generation pipeline for
arbitrary skeletons, including coordinate color encoding
for compact condition representation and the skeletal cor-
relation module for effective condition injection.
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Figure 2. Illustration of the pipeline for skeleton generation from meshes (§3.2). The curve skeleton is first extracted from the given
mesh, followed by simplification of parted curves. The curve graph is converted to a tree as the final skeleton.

2. Related Work

Controllable 2D Generation. Based on image diffusion
models [51–53], versatile controlling conditions have been
studied. In terms of spatial controlling, ControlNet [75] and
other similar works [40, 78] train a side network for spa-
tial conditions such as edge maps, normal maps and human
skeletons. Some works focus on human image generation
from skeletons [18, 20, 62]. Box-based instance control-
ling is also concerned in some works [29, 79, 81]. As for
content controlling, DreamBooth [54] finetunes the model
to bind the given subject with an identifier in text prompt.
IP-Adapter [74] trains an adapter to inject styles or concepts
into the model. Some works [31, 32, 63] also focus on hu-
man ID control. Besides, some methods [2, 38, 39, 41] can
achieve conditional generation without fine-tuning.
Controllable 3D Generation. Controlling contents in 3D
generation can be easily achieved by controlling image-
to-3D generation, which has been studied by plenty of
works [17, 27, 59, 69]. However, in the image-to-3D
paradigm, spatial controlling for 3D generation is not as
easy as content controlling. Many works enhance control-
ling ability upon score distillation paradigm [28, 46, 83].
Coin3D [10] presents a framework to control the multi-view
diffusion and 3D generation by shape proxies, i.e. combina-
tion of simple basic shapes. Sculpt3D [6] enhances text-to-
3D generation with retrieved 3D priors. Sherpa3D [34] pro-
poses to generate a coarse shape with a 3D diffusion model
and refine the shape with SDS [46]. Some works for 3D
human or head avatar generation [19, 24, 33, 77, 80, 82]
uses human skeleton or facial landmarks as the condition
in 2D or 3D space. Recent 3D native diffusion models
[7, 21, 25, 67, 76] indicate promising results. Clay [76] de-
signs a transformer-based [45, 60] 3D diffusion framework
and various conditions like images and point clouds can be
injected through cross-attention layers. A recent work MV-
Control [30] realizes 3D generation with single-view 2D
spatial conditions like normal maps and edge maps by con-
ditional multi-view generation and 3D reconstruction. Our
work shares the similar workflow, but we focus on general
skeleton conditioned generation, which has never been stud-
ied by previous works. Another recent work Animatable-

Dreamer [65] generates 4D objects with skeletons extracted
from given videos by canonical score distillation, while our
work develops a totally different framework for instant gen-
eration. As for skeletal representation, AnimatableDreamer
extracts dense joints and unstructured bones from videos,
while our method creates sparse joints and structured bones,
which are more similar to human-made skeletons and more
efficient for shape representation and animation.
Mesh Skeletonization. Various algorithms were designed
for extracting skeletons from 3D meshes. [58] and [1] com-
pute curve skeletons (C-S) via iterative mesh contraction
operations. [11, 66] proposed to extract skeletons medial
axis transformation skeleton (MAT-S) by point selection
and connection prediction. C-S and MAT-S can serve as
shape representation, while human-made skeletons (H-S)
are often different from them. Since the main purpose is
animation, H-S only contain sparse joints and bones. Some
works [70, 71] propose data-driven approaches to learn
mesh skeletonization from human annotated data. In this
work, we have tried learning-based method [71] but found
the results were not satisfactory. Therefore, we develop a
new pipeline to generate skeletons which are as sparse as
H-S while keep the shape of C-S.

3. Dataset Construction
3.1. Data Preparation
The largest existing open dataset containing mesh-skeleton
pairs is ModelResources [70]. There are around 3,000 3D
meshes without textures. The scale is insufficient to train
a text-driven generative model, and it lacks textures for ap-
pearance modeling. To address these limitations, we con-
struct a dataset with 8× larger scale and includes color tex-
tures. Our dataset, named Objaverse-SK, is built upon a
large-scale 3D dataset Objaverse [8]. Although our data
generation pipeline is applicable to a broad range of ob-
ject categories, we focus on three main categories including
“Animals”, “Human Shapes” and “Plants”, as they can typ-
ically be represented by tree-structured skeletons. Category
labels are obtained from G-Objaverse [47]. Consequently,
our dataset contains 24k 3D meshes, consisting of 15k an-
imals, 6k human shapes and 3k plants. Text prompts for



Co
nv

Bl
oc

ks

Ad
aL

N

Ad
aL

N

Se
lf-

At
tn

.

Cr
os

s-
At

tn
.

Camera Embedding

Skeletal Correlation Modeling (SCM)
Skeletal Guidance Injection

Skeletal Conditioned Multi-view Diffusion (~10s)

La
rg

e 
Re

co
n.

M
od

el

M
ul

ti-
vi

ew
Ed

ge
-T

ili
ng

Multi-view to 3D (~10s) 

Coordinate Color Encoding (CCE) 2562

10242

U
V 

Te
xt

ur
e

O
pt

im
iza

tio
n

Refined Mesh

Noise Latent

Cross-view Attn.
Multi-view Conditions 3D Skeleton Multi-view Images Reconstructed Mesh

+

Texture Refinement (~60s) 

Conv

Co
nv

Bl
oc

ks

Ad
aL

N

Ad
aL

N

Se
lf-

At
tn

.

Cr
os

s-
At

tn
.

Camera Embedding

Skeleton Correlation Modeling (SCM)
Skeletal Guidance Injection

Skeletal Conditioned Multi-view Diffusion (~10s)

La
rg

e 
Re

co
n.

M
od

el

M
ul

ti-
vi

ew
Ed

ge
-T

ili
ng

Multi-view to 3D (~10s) 

Coordinate Color Encoding (CCE) 2562

10242

U
V 

Te
xt

ur
e

O
pt

im
iza

tio
n

Refined Mesh

Noise Latent
Cross-view Attn.

Multi-view Conditions 3D Skeleton Multi-view Images Reconstructed Mesh

+

Texture Refinement (~60s) 

Conv

“An octopus”

Text Prompt
Figure 3. Illustration of the pipeline for skeletal conditioned multi-view and 3D generation (§4). The 3D skeleton is projected into
2D images and represented by coordinate color encoding. The skeletal correlation is modeled by skeletal correlation module, and then
is injected into the diffusion model. Multi-view images are first generated and then a 3D textured mesh is reconstructed. The texture is
further refined through UV-space optimization. Our framework achieves instant and high-quality generation given arbitrary skeletons.

these models are generated by Cap3D [36].

3.2. Skeleton Generation

To obtain mesh-skeleton pairs, a effective method for gener-
ating skeletons from meshes is crucial. There are two con-
cerns: the skeleton structure and success rate. The skeleton
structure should accurately describe the object anatomy and
be suitable for posing. Furthermore, an ideal method should
generate reasonable skeleton structures with a high success
rate. We tested a learning-based method RigNet [71] (Fig.
4). Although the generated skeleton structures can be close
to human-made skeletons in its training data, it primar-
ily produces symmetric skeletons and tends to be unstable
across diverse anatomies and poses.
Skeleton extraction. To enhance flexibility and robustness,
we design a new reliable pipeline, utilizing curve skeletons
as the intermediate representation. An illustration of the
pipeline is in Fig. 2. Given the structural inconsistency be-
tween curve skeletons and human-made skeletons, we fur-
ther convert dense curves into sparse joints and bones. The
detailed pipeline is elaborated below. 1) Initially, Mean
Curvature Flow (MCF) [58] is employed to generate curve
skeletons from meshes robustly. 2) Next, we build a graph
from the set of curves generated from the mesh, consisting
of dense nodes and edges. Intersection nodes (degree>1)
are identified and the graph is divided into several parts by
these nodes. 3) In each part, the curve contains no branches
so it can be simplified by the Douglas-Peucker algorithm
(DP) [12] into line segments.
Tree conversion. At this stage, the basic shape of the skele-
ton is established, but the root position and the bone direc-
tions between joints still need to be determined. The prob-
lem can be regarded as a graph-to-tree conversion. First,
a spanning tree is constructed from the graph to eliminate
cycles. We then identify high-degree intersection nodes as

candidates for the root. To ensure an efficient structure, the
skeleton is configured by selecting the tree with the min-
imum height among these candidates. This approach en-
sures that the root node is located at a significant intersec-
tion, minimizing the distances between the root and other
joints. More details can be found in the appendix.

4. Generation Pipeline

4.1. Skeletal Conditioned Multi-view Generation

As the dataset is constructed, we consider building the con-
ditional generative model based on it. Since unconditional
multi-view diffusion models have been well studied, we
start directly from a base model MVDream [55] and focus
on the conditional generation. Two main issues are of con-
cern: i) how the skeleton is represented, and ii) how it is
injected into the model.
Skeletal condition representation. As we aim to generate
images which align with the given skeletons, using spatial
guidance in the diffusion model is a reasonable approach.
Skeletons can be projected from 3D space to the image
plane as 2D conditions. However, overlapping and infor-
mation loss occur during the projection, which may lead to
semantic and structural ambiguities for spatial guidance, as
illustrated in Fig. 8. Thus, incorporating richer information
is crucial to mitigate these ambiguities.
Coordinate Color Encoding (CCE). In order to preserve
3D information, we encode joint coordinates using spatial
colors. While prior works [28, 61] use canonical color
maps for shape representation, our approach focuses on rep-
resenting skeletons with sparse joints and bones. We begin
by normalizing skeletons within a canonical cube [0, 1]3.
Each position in this cube corresponds to a unique color,
with RGB values precisely matching the positional coordi-
nates. As a result, the 2D conditional image can represent



the 3D spatial positions of the skeleton. For bones, we as-
sign colors based on their midpoint. Additionally, we incor-
porate normalized values of view-dependent inverse depth
of the skeleton as the alpha channel (CCE-D). With the ab-
solute spatial coordinates and relative depth encoded in the
conditional images, there will be more precise and richer
guidance information for generation.
Skeletal condition injection. Spatial conditions such as
canny edges and normal maps have been investigated in
2D image diffusion models. In ControlNet [75], the con-
ditional image is encoded by convolution blocks, resulting
in an output spatial size that matches the latent size. Then,
the condition features are added to the latent features. The
encoder of the original diffusion model is copied as a side
network to produce guidance features, which are fused with
the original features in the decoder. Our pipeline adopts this
paradigm from ControlNet, and further enhances it with a
more effective condition feature extraction module.
Skeletal Correlation Modeling (SCM). For a skeleton in
3D space, we first project it into multi-view images as 2D
conditions. Given the sparse nature of skeletons in spatial
dimension, convolution blocks lack global modeling capac-
ity. To address this, we design a Skeletal Correlation Mod-
ule (SCM) to enhance the condition features by modeling
the anatomical correlation among different parts of a skele-
ton, and the view correlation for different projection views.
The structure of the module is in Fig. 3. (i) First, anatomi-
cal correlation is extracted by a self-attention layer, which
constructs the global skeleton features for each view. (ii)
Then, the cross-view correlation is modeled by a cross-
attention layer, allowing the extraction of correspondences
among skeleton images from multiple views. This enables
the model to recognize identical joints in different views. In
addition, we use adaptive layer normalization [68] to fuse
the camera pose embedding with the skeletal features. As-
sociating each skeleton image with a camera pose helps to
generate view-dependent shapes. Adding correlation layers
during condition encoding significantly facilitates learning,
achieving 5× faster convergence (Fig. 9).

4.2. Multi-view Images to 3D Generation

Instant reconstruction. Given the generated multi-view
images, we use a Large Reconstruction Model (LRM),
specifically InstantMesh [69] for fast textured mesh recon-
struction. However, the reconstructed textures often appear
blurry. On one hand, the resolution of generated images is
2562, which struggles to capture fine details. On the other
hand, the appearance quality also degrades during recon-
struction. In order to recover and further enrich the appear-
ance, we introduce a new refinement stage.
Appearance refinement. First, the generated multi-view
images are upscaled 4 times into 10242 by Stable Diffu-
sion with ControlNet-Tile [75]. ControlNet-Edge [9, 75]

is used to maintain the shape consistency across different
views during tiling. Once tiled, these high-resolution im-
ages Ihi are used to refine the reconstructed texture. A learn-
able 2D texture u in UV space is created and initialized as
the reconstructed texture u0, and then images are rendered
through differentiable rendering R(u, ci) for given camera
views ci. The MSE loss is optimized between the rendered
images and tiled high-res images. Moreover, a regulariza-
tion term is added to maintain consistency in UV space:

Lu =
∑
i

||Ihi −R(u, ci)||22 + λ ∗ ||u− u0||22. (1)

Since the high-res images cannot cover every position on
the mesh, some regions of u will not be optimized, e.g.
bottom of the object. We found these regions are unstable
during optimization and may produce unexpected artifacts
(see Fig. 10). The regularization term helps the optimized
texture maintain the appearance from u0 in these regions.
Consequently, the high-frequency details can be learned in
covered regions while the global consistency can also be
achieved in uncovered regions. The optimization can be fin-
ished within 15 seconds.

4.3. Object-Skeleton Alignment Evaluation
Contrastive alignment. In order to measure how much
an object is aligned with a skeleton, we develop a new
evaluator, named Contrastive Object-Skeleton Alignment
(COSA). We use the self-supervised DINOv2 [44] as the
backbone F to extract both object and skeleton features.
Then, the alignment adapter Gθ consisting of several self-
attention layers is used to modulate the features. The
adapter ends with an average pooling layer to aggregate
the aligned features into a vector. Similar to CLIP [49],
we train the adapter using contrastive learning by InfoNCE
loss [42, 56]. Finally, the skeleton alignment score (SKA)
can be calculated by cosine similarity between the features
from an object image x and a skeleton image y as:

SSKA(x, y) = cos(G(F (x)), G(F (y))). (2)

COSA guided diffusion. Based on COSA, another con-
ditional generation pipeline can also be realized, following
the approach proposed in [2]. On each denoising time step
t, the approximate clean image x̂0 is estimated from the pre-
dicted noise ϵt as in DDIM [57]. The estimated clean image
and skeleton condition are fed into COSA to calculate the
alignment loss LCOSA(x̂0, y) = 1−SSKA(x̂0, y). Then the
predicted noise is modified by the gradient of the alignment
loss for actual denoising:

ϵ̂t = ϵt + s(t) · ∇LCOSA(x̂0, y) (3)

where s(t) controls the guidance strength. With the addi-
tional guidance of the alignment loss, the generated object
will tend to follow the conditional skeleton y.



Method\SKA Score Training MeanInst. MeanClass Animals Humans Plants Apodes Bipeds Quadrupeds Arthropods Wings
SDEdit [38] ❍ 70.13 65.06 79.50 64.70 50.99 74.74 75.24 82.73 79.07 79.21
SDEdit+COSAG ◗ 72.11 67.32 80.91 67.60 53.46 79.73 83.17 85.98 77.80 73.82

Ours-Raw ● 74.69 67.09 88.39 69.90 42.97 94.74 82.14 90.18 89.81 84.69
Ours-SCM ● 80.43 74.38 91.16 78.45 53.53 94.47 85.20 94.19 90.68 88.40

Table 1. Quantitative comparison of object-skeleton alignment (SKA) score (§5.2). Alignment scores are calculated over three classes
(blue) and five subclasses of animal (green). The average scores over all instances and three classes (pink) are also shown. The highest
scores among all methods are bold and the highest scores among baseline methods are underlined.

PickScore CLIP Score
Method Training Win Rate Animals Human Plants MeanInst. Animals Human Plants
SDEdit [38] ❍ 19.56 18.23 14.66 28.98 29.04 29.47 28.71 28.29
SDEdit+COSAG ◗ 18.17 18.54 19.95 15.06 28.99 29.52 28.50 28.11

Ours-Raw ● 28.99 29.06 28.37 29.55 29.90 30.10 30.02 29.23
Ours-SCM ● 33.28 34.17 37.02 26.42 29.83 30.23 29.84 28.75

Table 2. Quantitative comparison of PickScore and CLIP Score (§5.2). Scores are calculated over three classes (blue) and averaged
over all instances (red). The highest scores among all methods are bold and the highest scores among baseline methods are underlined.

Flexibility (orientation) Joint Alignment Bone AlignmentFlexibility (symmetry)

Ri
gN
et

O
ur

s

RigNet: 16/100
Ours: 78/100

Joint/bone alignmentSymmetry/orient. flexibility

Ri
gN
et

O
ur

s

Flexibility (symmetry)

Ri
gN
et

O
ur

s

Joint/bone Alignment

Bone Alignment

Figure 4. Comparison of skeletons generated from 3D meshes
by RigNet [71] and our method (§5.1).

5. Experiment
5.1. Results of Mesh Skeletonization
We compare our method with the learning-based method
RigNet [71], and the results are shown in Fig. 4. RigNet
tends to produce symmetric skeletons with limited flexibil-
ity and misaligned joints/bones, resulting in an around 15%
success rate. In contrast, our method supports arbitrary-
pose skeletons and achieves better joint/bone alignment. It
produces more reliable results with an 80% success rate.
More details and results can be found in appendix.

5.2. Results of Multi-view Generation
Evaluation protocols. The Objaverse-SK evaluation
set contains 108 skeleton instances, covering three main
classes: animals, human shapes and plants. As animals in-
clude diverse skeleton structures, we further divide them
into more detailed subclasses (examples are shown be-
hind): Apodes (fish, snakes), Bipeds (ducks, penguins),
Quadrupeds (dogs, bears), Arthropods (scorpions, crabs),
Wings (birds, dragons). Three evaluation metrics are con-

sidered for multi-view generation: SKA Score for skeletal
alignment, PickScore for image quality, and CLIP Score for
textual alignment. Furthermore, samples from categories
excluded in training are obtained from ShapeNet [5] for
generalization evaluation (Fig. 7). Additionally, evaluation
results on human-made skeletons are in appendix.
Baseline methods. Since there is no prior work that can
achieve arbitrary skeletal conditioned generation, we im-
plement two methods for comparison. The first baseline is
SDEdit [38]. The process starts from adding noise on con-
ditional images with a time step (set as 0.7). Then clean
images are generated by denoising steps. The method is
entirely unsupervised. The second baseline is the COSA
Guidance (COSAG) derived from [2], which is elaborated
in Section 4.3. The guidance strength is set as s(t) =
7.5

√
1− αt. Since we found it cannot achieve stable re-

sults, it is combined with SDEdit. The method requires an
extra model so it is half supervised. Ours is fully supervised
on object-skeleton pairs.
Qualitative comparison. The qualitative results are shown
in Fig. 5. Given skeleton images as conditions, SDEdit can
produce images following the skeleton. However, limited
by the editing capacity, the generated objects often have in-
correct anatomies. For example, the snake body is broken,
and the donkey body is generated as wooden. When it is en-
hanced by the COSAG, the quality of generated content is
improved in some cases but still unsatisfactory. Compared
with them, our results show superior quality and are more
consistent with both skeletal and textual conditions.
Quantitative comparison. Comparison results of skele-
ton alignment are shown in Table 1. SDEdit-based meth-
ods have around 70 SKA scores, while ours can achieve
80. Among three classes, animals tend to have higher align-
ment scores while plants have lower scores. Since plants
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Figure 6. Qualitative comparison of textured meshes before and after refinement (§5.3). Rendered color images are shown. Local
areas are enlarged for better viewing.

may have more complex structures and sometimes extend
further from skeletons. For five sub-classes, our method
achieves consistently high alignment scores. With the help
of SCM and CCE-D skeletons, both the alignment scores
and pick scores are further improved.

5.3. Results of 3D Generation
Texture refinement. Results of 3D reconstruction from
multi-view images are shown in Fig. 6. The raw recon-
structed and refined results are compared. The raw textures
are blurry and lack details, while the proposed refinement
stage can significantly enhance texture quality.
Rigging and animation. Given a motion sequence of a
skeleton, our method can be applied to generate 4D anima-
tion. Textured mesh can be generated given the skeleton at
the rest pose, and then directly be rigged and skinned for
animation. Demo videos can be found in project page1.

1https://skdream3d.github.io/.

6. Ablation Study

Skeletal condition representation. The skeletal condition
representation we use consists of coordinate color encod-
ing (CCE) with depth alpha (D). The ablation results are
shown in Fig. 8 and Tab. 3. Richer information in condi-
tions can help the model determine the content better. As
a result, better alignment can be achieved. In Fig. 8 right,
the skeleton of a penguin is highly ambiguous. If CCE-D is
used, the body pose and orientation of the penguin can be
successfully inferred from colors.
Skeletal correlation modeling. We show the effect of
our skeletal correlation module in Tab. 3 and Fig. 9. SCM
achieves better alignment scores than convolutional blocks.
SCM with layer normalization (LN) achieves a 4× faster
convergence rate. Furthermore, if LN is replaced with the
adaptive LN (AdaLN), the model can achieve an SKA score
of 70 within 1k training steps. The results indicate that ex-
tracting global features from conditional images is crucial.
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Figure 7. Qualitative results of novel categories in ShapeNet [5]
(§5.2), which are not covered by the training set of Objaverse-SK.
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Figure 8. Ablation study of coordinate color encoding with
depth alpha (CCE-D) (§6). Richer information can help the
model to avoid ambiguity and generate better anatomy.

Module Skeleton SKA Score Animals Humans Plants
SCM CCE-D 80.43 91.16 78.45 53.53
SCM CCE 78.97 90.45 74.82 52.57
SCM Binary 77.27 89.20 76.04 46.16

Conv CCE-D 76.65 88.53 75.04 46.17
Conv Binary 74.69 88.39 69.90 42.97

Table 3. Ablation study of skeletal module and representation
types (§6). SCM and CCE-D achieve higher alignment scores.

Refinement regularization. We show the ablation results
of appearance refinement in Fig. 10. The refined appear-
ance contains rich details such as snake scales and wood
grain, in comparison to the reconstructed results. However,
artifacts also appear in the regions that are not covered by
high-res images. With the help of UV space regularization,
the artifacts are effectively removed in uncovered regions.
As a result, consistent colors are maintained from original
textures and details are enhanced during optimization.

0k 1k 2k 3k 4k 5k 6k 7k 8k
Training Step

20

40

60

80

SK
A 

Sc
or

e

SCM-AdaLN SCM-LN Conv

Figure 9. Convergence processes of different skeletal modules
(§6). SCM with AdaLN achieves 5x faster convergence.

w/o refinement with refinement w/o regularization with regularization

w/o regularization with regularization

Bottom view UV Texture Bottom view UV Texture

Figure 10. Ablation study of UV space regularization (§6). Bot-
tom views and UV textures are shown. Front views of the snake
and the tree stump can be found in the first column of Fig. 6.

7. Limitation and Future Work
Although our work achieves arbitrary skeletal conditioned
generation, there are still many problems that can be fur-
ther studied. The skeletons we currently use may have lim-
ited descriptive ability for non-tree structured objects. More
powerful shape representations can be studied as new condi-
tions. In addition, our work only considers global skeletons
without fine-grained semantics. Injecting detailed seman-
tics into the skeleton parts is a meaningful topic to study.
For future work, the skeleton condition can be studied in na-
tive 3D generation frameworks. Moreover, our dataset may
also be used in other tasks such as arbitrary skeleton esti-
mation from images. More discussion is in the appendix.

8. Conclusion
In this work, we propose to use skeletons as the structural
condition for controllable generation. First, we construct a
large-scale 3D mesh-skeleton paired dataset. We propose
an effective mesh skeletonization method to generate mesh-
aligned sparse skeletons with a high success rate. Based
on the dataset, we present a skeletal conditioned multi-view
generation pipeline. Coordinate color encoding and skeletal
correlation module are proposed to realize efficient condi-
tion representation and injection. Furthermore, 3D meshes
can be instantly reconstructed, followed by a refinement
stage to achieve better texture quality. In summary, our
work achieves controllable multi-view and 3D generation
with arbitrary skeletons as conditions.
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